written 5.2 years ago by |
Impulse Invariance Transformation
Let $\mathrm{h}(\mathrm{t})$ and $\mathrm{H}(\mathrm{s})$ be the Impulse response and Transfer function of the analog filter.
$\therefore h(t)=L^{-1}\{H(s)\} \cdots(1)$
Let $\mathrm{H}(\mathrm{s})$ be a rational system with $\mathrm{N}$ distinct poles.
$\therefore H(s)=\sum_{i=1}^{N} \frac{A_{i}}{s-p_{i}},$ where $A_{i}$ are the partial fraction coefficients. $\cdots(2)$
$\therefore$ From $(1)$ and $(2), h(t)=L^{-1}\left\{\sum_{i=1}^{N} \frac{A_{i}}{s-p_{i}}\right\}$
$=\sum_{i=1}^{N} L^{-1}\left\{\frac{A_{i}}{s-p_{i}}\right\}$
$=\sum_{i=1}^{N} A_{i} e^{p_{i} t} u(t),$ where $u(t)$ is the CT Unit Step function.
Impulse response of the digital filter is obtained by uniform sampling of the Impulse response of the analog filter. Let T be sampling period.
$\therefore \mathrm{t}=\mathrm{n} \mathrm{T},$ where $\mathrm{n}$ is the sampling instant.
$\therefore$ Impulse response of the digital filter
$h(n)=\left.h(t)\right|_{t=n T}$
$=\left.\sum_{i=1}^{N} A_{i} e^{p_{i} t} u(t)\right|_{t=n T}$
$=\sum_{i=1}^{N} A_{i} e^{p_{i} n T} u(n T)$
$\therefore$ Transfer function of the digital filter
$H(z)=Z\{h(n)\}$
$=Z\left\{\sum_{i=1}^{N} A_{i} e^{p_{i} n T} u(n T)\right\}$
$=\sum_{i=1}^{N} A_{i} Z\left\{\left[\left(e^{p_{i} T}\right)^{n}\right] u(n T)\right\}$
$=\sum_{i=1}^{N} \frac{A_{i}}{1-e^{p_{i} T} z^{-1}} \cdots(3)$
(2) and (3) represents Transfer Function in analog and digital domain. They must be equal.
$\therefore \sum_{i=1}^{N} \frac{A_{i}}{s-p_{i}}=\sum_{i=1}^{N} \frac{A_{i}}{1-e^{p_{i} T} z^{-1}}$ and
$\therefore \frac{1}{s-p_{i}}=\frac{1}{1-e^{p_{i} T} z^{-1}}$
$\therefore \frac{1}{s-p_{i}}=\frac{z}{z-e^{p_{i} T}} \cdots(4)$
Given:
$H(s)=\frac{1}{s+1}$
Here, $s=-1$ is the pole in s-plane.
$\left.\text { From }(4), H(z)=\frac{z}{z-e^{-1 \times 1}} \text { (Assuming } \mathrm{T}=1\right)$
$\therefore H(z)=\frac{z}{z-0.3679}$
$\therefore$ Transfer function of the digital filter
$H(z)=\frac{z}{z-0.3679 z}$