0
3.0kviews
Compute the DFT of the sequence x(n)={0,1,2,1}
1 Answer
written 5.6 years ago by |
For N=4, Twiddle factor is Wnk4=e−j2πkn/4
Twiddle factor Matrix
W=[W04W04W04W04W04W14W24W34W04W24W44W64W04W34W64W94]
Consider, W04=e−0/4=1
W14=e−jπ2/4=cosπ2−jsinπ2=0−j×1=−j
W24=e−jπ4/4=cosπ−jsinπ=−1−0=−1
W34=e−j6π/4=cos3π2−jsin3π2=0−j×−1=j
W44=e−j8π/4=cos2π−jsin2π=1−0=1
W64=e−j12π/4=cos3π−jsin3π=−1−0=−1
W94=e−j18π/4=cos9π2−jsin9π2=0−j×1=−j
∴W=[11111−j−1j1−11−11j−1−j]
Let x(n)={0,1,2,1}}
∴DFT[x(n)]=X(k)=W×x(n)
∴X(k)=[11111−j−1j1−11−11j−1−j]×[0121]
=[0+1+2+10−1j−2+1j0−1+2−10+1j−2−1j]
=[4−20−2]
Hence, X(k)={4,−2,0,−2}