0
3.0kviews
Compute the DFT of the sequence x(n)={0,1,2,1}
1 Answer
0
297views

For N=4, Twiddle factor is Wnk4=ej2πkn/4

Twiddle factor Matrix

W=[W04W04W04W04W04W14W24W34W04W24W44W64W04W34W64W94]

Consider, W04=e0/4=1

W14=ejπ2/4=cosπ2jsinπ2=0j×1=j

W24=ejπ4/4=cosπjsinπ=10=1

W34=ej6π/4=cos3π2jsin3π2=0j×1=j

W44=ej8π/4=cos2πjsin2π=10=1

W64=ej12π/4=cos3πjsin3π=10=1

W94=ej18π/4=cos9π2jsin9π2=0j×1=j

W=[11111j1j11111j1j]

Let x(n)={0,1,2,1}}

DFT[x(n)]=X(k)=W×x(n)

X(k)=[11111j1j11111j1j]×[0121]

=[0+1+2+101j2+1j01+210+1j21j]

=[4202]

Hence, X(k)={4,2,0,2}

Please log in to add an answer.