written 5.2 years ago by |
The design steps for FIR filter using window techniques are
1. The specifications required for FIR filter design are-
a) Type of Filter: Low Pass, High Pass, band-pass and band-stop filters.
b) Order N (or length M) of the filter, $N=M-1$
c) Desired Frequency Response
$H_{d}\left(e^{j w}\right)=C e^{-j \alpha \omega}$ , where $\alpha=\frac{M-1}{2}$
d) Cut-off frequency: $\omega_{c}$ for $\mathrm{LPF}$ and $\mathrm{HPF}$ or $\omega_{c 1}$ and $\omega_{c 2}$ for band-pass and band-stop filters. If Cut-off frequency is $F_{c}$ . Hz and Sampling frequency is $F_{S}$ Hz then $\omega_{c}=\frac{2 \pi F_{c}}{F_{S}}$
2. Desired Impulse Response $h_{d}(n)$ is computed using above specifications by Inverse DTFT of $H_{d}\left(e^{j w}\right)$
$\therefore h_{d}(n)=\frac{1}{2 \pi} \int_{a}^{b} H_{d}(\omega) e^{j \omega n} d \omega,$
where the limits of integration are the Cut-off frequency depending on the type of filter.
3. Desired Impulse Response $h_{d}(n)$ is of infinite duration. To make if of finite duration, it is multiplied with a suitable window function
$W(n)=\left\{\begin{array}{ll}{A} & {0 \leq n \leq N-1} \\ {0} & {\text { otherwise }}\end{array}\right.$
$\therefore$ Finite Impulse Response $h(n)=h_{d}(n) \times W(n)$
Use symmetric conditions $h(n)=h(N-1-n)$
when centre of Impulse response is at $\alpha$ and $h(n)=h(-n)$ when centre of Impulse response is at origin. So only half the number of Impulse response are calculated.
4. Transfer Function of the FIR Filter is obtained by taking Z Transform of Finite Impulse Response h(n).
$\therefore$ Transfer Function of Filter $H(z)=\sum_{n=0}^{N-1} h(n) \cdot z^{-n}$
Compare windows
Sr No | Type of window | Definition of Window Sequence $W(n)=\left\{\begin{array}{ll}{A} & {0 \leq n \leq N-1} \\ {0} & {\text { else }}\end{array}, \text { where }\right.$ | Approximate Transition width of Main Lobe | Magnitude of the Peak of First Side Lobe | Minimum Stop-band Attenuation |
---|---|---|---|---|---|
1 | Rectangular | $A=1$ | $\frac{4 \pi}{N}$ | $-13 d B$ | $21d B$ |
2 | Traingular | $A=1-\frac{|n-\alpha|}{\alpha}$ | $\frac{8 \pi}{N}$ | $-25 d B$ | $25 d B$ |
3 | Hanning | $A=0.5-0.5 \cos \frac{\pi n}{\alpha}$ | $\frac{8 \pi}{N}$ | $-31 d B$ | $44 d B$ |
4 | Hamming | $A=0.54-0.46 \cos \frac{\pi n}{\alpha}$ | $\frac{8 \pi}{N}$ | $-41 d B$ | $53 d B$ |
5 | Blackman | $A=0.42-0.5 \cos \frac{\pi n}{\alpha}+0.08 \cos \frac{2 \pi n}{\alpha}$ | $\frac {12 \pi}{N}$ | $-57 d B$ | $74 d B$ |