0
6.0kviews
Write down the design steps for FIR filter using the window techniques. Compare windows.
1 Answer
0
202views

The design steps for FIR filter using window techniques are

1. The specifications required for FIR filter design are-

a) Type of Filter: Low Pass, High Pass, band-pass and band-stop filters.

b) Order N (or length M) of the filter, $N=M-1$

c) Desired Frequency Response

$H_{d}\left(e^{j w}\right)=C e^{-j \alpha \omega}$ , where $\alpha=\frac{M-1}{2}$

d) Cut-off frequency: $\omega_{c}$ for $\mathrm{LPF}$ and $\mathrm{HPF}$ or $\omega_{c 1}$ and $\omega_{c 2}$ for band-pass and band-stop filters. If Cut-off frequency is $F_{c}$ . Hz and Sampling frequency is $F_{S}$ Hz then $\omega_{c}=\frac{2 \pi F_{c}}{F_{S}}$

2. Desired Impulse Response $h_{d}(n)$ is computed using above specifications by Inverse DTFT of $H_{d}\left(e^{j w}\right)$

$\therefore h_{d}(n)=\frac{1}{2 \pi} \int_{a}^{b} H_{d}(\omega) e^{j \omega n} d \omega,$

where the limits of integration are the Cut-off frequency depending on the type of filter.

3. Desired Impulse Response $h_{d}(n)$ is of infinite duration. To make if of finite duration, it is multiplied with a suitable window function

$W(n)=\left\{\begin{array}{ll}{A} & {0 \leq n \leq N-1} \\ {0} & {\text { otherwise }}\end{array}\right.$

$\therefore$ Finite Impulse Response $h(n)=h_{d}(n) \times W(n)$

Use symmetric conditions $h(n)=h(N-1-n)$

when centre of Impulse response is at $\alpha$ and $h(n)=h(-n)$ when centre of Impulse response is at origin. So only half the number of Impulse response are calculated.

4. Transfer Function of the FIR Filter is obtained by taking Z Transform of Finite Impulse Response h(n).

$\therefore$ Transfer Function of Filter $H(z)=\sum_{n=0}^{N-1} h(n) \cdot z^{-n}$

Compare windows

Sr No Type of window Definition of Window Sequence $W(n)=\left\{\begin{array}{ll}{A} & {0 \leq n \leq N-1} \\ {0} & {\text { else }}\end{array}, \text { where }\right.$ Approximate Transition width of Main Lobe Magnitude of the Peak of First Side Lobe Minimum Stop-band Attenuation
1 Rectangular $A=1$ $\frac{4 \pi}{N}$ $-13 d B$ $21d B$
2 Traingular $A=1-\frac{|n-\alpha|}{\alpha}$ $\frac{8 \pi}{N}$ $-25 d B$ $25 d B$
3 Hanning $A=0.5-0.5 \cos \frac{\pi n}{\alpha}$ $\frac{8 \pi}{N}$ $-31 d B$ $44 d B$
4 Hamming $A=0.54-0.46 \cos \frac{\pi n}{\alpha}$ $\frac{8 \pi}{N}$ $-41 d B$ $53 d B$
5 Blackman $A=0.42-0.5 \cos \frac{\pi n}{\alpha}+0.08 \cos \frac{2 \pi n}{\alpha}$ $\frac {12 \pi}{N}$ $-57 d B$ $74 d B$
Please log in to add an answer.