written 5.3 years ago by | • modified 5.3 years ago |
The maximum shear stress is limited to 60 N/mm2. Take the value of modulus of rigidity = 8 × 104 N/mm2.
written 5.3 years ago by | • modified 5.3 years ago |
The maximum shear stress is limited to 60 N/mm2. Take the value of modulus of rigidity = 8 × 104 N/mm2.
written 5.3 years ago by | • modified 5.3 years ago |
Given:
For Solid circular steel shaft-
p = 90 kW = $90 \times 10^{3} watts$,
N = 160 rpm , $q_{max} = 60 N/mm^{2}$,
$G = 8 \times 10^{4} N/mm^{2}$
$\theta = a^{o} = 1 \times \frac{\pi}{180} = 0.0175 rad$
Solution:
$P = \frac{2 \pi N T_{avg}}{60}$
$90 \times 10^{3} = 3 \pi \times 160 \times T_{avg}/60$
$\therefore T_{avg} = 5.371 \times 10^{3} N-m = 5.371 \times 10^{6} N-mm$
Student may assume $T_{max} = T_{avg} = 5.371 \times 10^{6} N-mm$
Using the relation,
$\frac{T}{i_{P}} = \frac{q_{max}}{R}$
$\therefore \frac{5.371 \times 10^{6} \times 32}{\pi \times 60 \times 2} = \frac{60 \times 2}{d}$
$\therefore d^{3} = \frac{5.371 \times 10^{6} \times 32}{\pi \times 60 \times 2} = 455.90 \times 10^{3}$
$\therefore$ d = 76.96 mm
Now, $I_{p} = \frac{\pi}{32} \times d^{4} = \frac{\pi}{32} \times 76.96^{4} = 3.444 \times 10^{6} mm^{4}$
Using the relation,
$\frac{T}{I_{p}} = \frac{G_{o}}{L}$
$\therefore L = \frac{G_{o} - I_{p}}{T} = \frac{8 \times 10^{4} \times 0.0175 \times 3.444 \times 10^{6}}{5.371 \times 10^{6}}$
L = 897.71 mm
$\therefore$ Length of shaft = L = 0.897m say 0.9m.