written 5.4 years ago by |
Given:
For a rectangular S.S wooden beam -
b = 150mm, d = 250mm, L = 1.3m ,
Central point load = 'W' N
$\sigma_{b} = 7 N/mm^{2} and q_{max} = 1 N/mm^{2}$
Solution:
M = Max. B.M. = $\frac{WL}{4} = \frac{w \times 1.3}{4} = 0.325 W - N.m$
S = Max S.F =. Reaction = $\frac{W}{2}N = 0.5 WN$
For rectangular section,
A = b x d = 150 x 250 = 37500 $mm^{2}$
I = $\frac{bd^{3}}{12} = \frac{150 \times 250^{3}}{12} = 195.31 \times 10^{6} mm^{4}$
$y_{max} = d/2 = \frac{250}{2} = 125 mm$
Value of 'W' for bending stress criteria
$\frac{M}{I} = \frac{\sigma}{y} \therefore M = \frac{\sigma}{y} \times y$
$\therefore 325 W = \frac{7 \times 195.31 \times 10^{6}}{125}$
$\therefore W = 33653.41 N = 33.65kN$
Value of 'W' for shear stress criteria
$q_{max} = \frac{1.55}{A}$
$\therefore 1 = \frac{1.5 \times 0 w}{37500} = 33.65kN$
$\therefore W = 50000N - 50kN$
Safe Value of W = min, of A & B = 33.65 kN