written 5.4 years ago by | • modified 3.0 years ago |
Given:
For rectangular S.S. beam, b = 100 mm. L = 4m, $\sigma_{b} = 40 N /mm^{2} , q_{max} = 80N/mm^{2}$
Solution:
Max B.M = M = $\frac{wl^{2}}{8} \times 10^{6} Nm$
Max S.F = S = $R_{A} = \frac{wL}{2} \times 10^{3}N$
$For beam section, I = \frac{bd^{3}}{12} = \frac{100 \times 150^{3}}{12} = 28.125 \times 10^{6 }mm^{4}$
Value of 'w' for bending stress criteria
$M = \frac{\sigma}{y} \times I$
$10^{6} \times \frac{wl^{2}}{8} = \frac{28 \times 28.125 \times 10^{6}}{75}$
$10^{6} \times \frac{w \times 2^{2}}{8} = \frac{28 \times 28.125 \times 10^{6}}{75}$
$\therefore w = 21 kN/m$
Value of 'w' for shear stress criteria
$q_{max} = 1.5 \frac{S}{A}$
$2 = \frac{1.5 \times w \times 2 \times 10^{3}}{2 \times 100 \times 150}$
$w = 20 kN/m$
$\therefore UDL = minimum of A$ & $ B$
$W = 20 kN/m$