1
2.5kviews
A cantilever is 2 m long and is subjected to udl of 2 kN/m. The cross section of cantilever is tee section with flange 80 mm x 10 mm and web of 10 mm x 120 mm such that its total depth is 130 mm.

The flange is at the top and web is vertical. Determine maximum tensile stress and compressive stress developed and their positions.

1 Answer
0
148views

Data: L = 2 m, w = 2 kN/m

To find: $\sigma_{c}(max)$ and $\sigma_{t}(max)$

enter image description here

$\mathrm{M}_{\max }=\frac{w L^{2}}{2}=\frac{\left(2 \times 10^{3}\right) \times 2^{2}}{2}=4 \times 10^{3} N-m=4 \times 10^{6} N-m m$

$\overline{Y}_{b a s e}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=\frac{(80 \times 10) \times 125+(10 \times 120) \times 60}{(80 \times 10)+(10 \times 120)}=86 \mathrm{mm}$

$\mathrm{I}_{\mathrm{NA}}=\mathrm{I}_{\mathrm{XX}}=\left[\left(\frac{b d^{3}}{12}\right)+A h^{2}\right]_{1}+\left[\left(\frac{b d^{3}}{12}\right)+A h^{2}\right]_{2}$

$\mathrm{I}_{\mathrm{XX}}=\left[\left(\frac{80 \times 10^{3}}{12}\right)+(80 \times 10) \times(44-5)^{2}\right]_{1}+\left[\left(\frac{10 \times 120^{3}}{12}\right)+(10 \times 120) \times(86-60)^{2}\right]_{2}$

$\mathrm{I}_{\mathrm{NA}}=\mathrm{I}_{\mathrm{XX}}=347.466 \mathrm{x} 10^{4} \mathrm{mm}^{4}$

$\overline{Y}_{b a s e}=\mathrm{Y}_{\mathrm{C}}=86 \mathrm{mm}$

$\mathrm{Y}_{\mathrm{t}}=130-86=44 \mathrm{mm}$

$Maximum Compressive and Tensile Stress developed:$

$\frac{M_{\max }}{I}=\frac{\sigma_{C}}{Y_{C}}=\frac{\sigma_{t}}{Y_{t}}$

$\frac{4 \times 10^{6}}{347.466 \times 10^{4}}=\frac{\sigma_{C}}{86}=\frac{\sigma_{t}}{44}$

$\sigma_{C}=\frac{4 \times 10^{6} \times 86}{347.466 \times 10^{4}}=99.002 N / m m^{2}$ (At Bottom fiber)

$\sigma_{t}=\frac{4 \times 10^{6} \times 44}{347.466 \times 10^{4}}=50.652 N / m m^{2}$ (At Top fiber)

Please log in to add an answer.