1
2.9kviews
A cantilever is 2 m long and is subjected to udl of 2 kN/m. The cross section of cantilever is tee section with flange 80 mm x 10 mm and web of 10 mm x 120 mm such that its total depth is 130 mm.

The flange is at the top and web is vertical. Determine maximum tensile stress and compressive stress developed and their positions.

1 Answer
0
194views

Data: L = 2 m, w = 2 kN/m

To find: σc(max) and σt(max)

enter image description here

Mmax=wL22=(2×103)×222=4×103Nm=4×106Nmm

¯Ybase=a1y1+a2y2a1+a2=(80×10)×125+(10×120)×60(80×10)+(10×120)=86mm

INA=IXX=[(bd312)+Ah2]1+[(bd312)+Ah2]2

IXX=[(80×10312)+(80×10)×(445)2]1+[(10×120312)+(10×120)×(8660)2]2

INA=IXX=347.466x104mm4

¯Ybase=YC=86mm

Yt=13086=44mm

MaximumCompressiveandTensileStressdeveloped:

MmaxI=σCYC=σtYt

4×106347.466×104=σC86=σt44

σC=4×106×86347.466×104=99.002N/mm2 (At Bottom fiber)

σt=4×106×44347.466×104=50.652N/mm2 (At Top fiber)

Please log in to add an answer.