written 5.2 years ago by |
Data: P = 200 HP, N = 180 rpm, = 80 N/mm2 =1, L = 3 m C = 0.82 x 105 N/mm2
Find d
Case – I
Diameter of shaft based on Shear Strength Criteria:
$\mathrm{P}=\left(\frac{2 \pi N T}{4500}\right) \mathrm{HP}$
$200=\left(\frac{2 \pi \times 180 \times T}{4500}\right)$
$\mathrm{T}=795.775 \mathrm{kg}-\mathrm{m}$
$\mathrm{T}=795.775 \times 9.81 \mathrm{N}-\mathrm{m}$
$\mathrm{T}=7806.5499 \times 10^{3} \mathrm{N}-\mathrm{mm}$
By using the relation
$\mathrm{T}=\frac{\pi}{16} \times \tau \times d^{3}$
$7806.5499 \times 10^{3}=\frac{\pi}{16} \times 80 \times d^{3}$
d = 79.21mm
Case – II
Diameter of shaft based on Rigidity Criteria:
By using the relation:
$\frac{T}{J}=\frac{C \theta}{L}$
$\frac{7806.5499 \times 10^{3}}{\frac{\pi}{32} d^{4}}=\frac{0.82 \times 10^{5} \times\left(1^{0} \times \frac{\pi}{180}\right)}{3 \times 10^{3}}$
$\mathrm{d}=113.63 \mathrm{mm}$
Choose the diameter of solid circular shaft equal to 114mm to satisfy the given conditions.