written 5.2 years ago by | modified 2.7 years ago by |
simply supported beam AB having span 5m and two point load 30 kN & 20 kN acts at 3m & 2m from support A respectively then reaction at A & B is...
written 5.2 years ago by | modified 2.7 years ago by |
simply supported beam AB having span 5m and two point load 30 kN & 20 kN acts at 3m & 2m from support A respectively then reaction at A & B is...
written 5.2 years ago by |
solution:
I. Support Reactions:
$\sum \mathrm{M}_{\mathrm{A}}=0$
$5 \times 1.5+7 \times 3.5-\mathrm{R}_{\mathrm{B}} \times 5=0$
$5 \times \mathrm{R}_{\mathrm{B}}=32$
$\mathrm{R}_{\mathrm{B}}=6.4 \mathrm{kN}$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}-5+7=0$
$\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=12$
$\mathrm{R}_{\mathrm{A}}=5.6 \mathrm{kN}$
II. SF calculations
$SF at A=+5.6 \mathrm{kN}$
$\mathrm{C}_{\mathrm{L}}=+5.6 \mathrm{kN}$
$\mathrm{C}_{\mathrm{R}}=5.6-5=0.6 \mathrm{kN}$
$\mathrm{D}_{\mathrm{L}}=+0.6 \mathrm{kN}$
$\mathrm{D}_{\mathrm{R}}=+0.6-7=-6.4 \mathrm{kN}$
$\mathrm{B}_{\mathrm{L}}=-6.4 \mathrm{kN}$
$\mathrm{B}=+6.4-6.4=0 \mathrm{kN}(\therefore \text { ok }$
B.M. calculation:-
B.M at A and B= 0 Since support A and B are simple.
B.M at C = 5.6 × 1.5=8.4 kN-m
B.M at D = 6.4× 1.5=9.6 kN-m