written 5.2 years ago by |
\begin{aligned} \mathrm{e}_{\mathrm{x}} &=\left(\frac{\sigma_{\mathrm{x}}}{\mathrm{E}}\right)-\left(\mu \frac{\sigma_{\mathrm{y}}}{\mathrm{E}}\right) \ &=\frac{1}{\mathrm{E}}\left(\sigma_{\mathrm{x}}-\mu \times \sigma_{\mathrm{y}}\right) \end{aligned}
\begin{aligned} &=\frac{1}{200 \times 10^{3}}(60+0.25 \times 40) \ e_{x} &=3.5 \times 10^{4} \end{aligned}
\begin{aligned} \mathrm{e}_{\mathrm{y}} &=\left(\frac{\sigma_{\mathrm{y}}}{\mathrm{E}}\right)-\left(\mu \frac{\sigma_{\mathrm{x}}}{\mathrm{E}}\right) \ &=\frac{1}{\mathrm{E}}\left(\sigma_{\mathrm{y}}-\mu \times \sigma_{\mathrm{x}}\right) \end{aligned}
\begin{aligned} &=\frac{1}{200 \times 10^{3}}(-40-0.25 \times 60) \ e_{y} &=-2.75 \times 10^{4} \end{aligned}
Maximum strain is $e_{x} =3.5 \times 10^{4}$