0
533views
Find mean, standard deviation an coefficient of variance of the following data
C.I 0-10 10-20 20-30 30-40 40-50
frequency 3 5 8 3 1
1 Answer
0
2views

Solution:

class $x_{i}$ $f_{i}$ $f_{I}x_{I}$ $d_{I}=\frac{x_{i}-a}{h}$ $f_{i}d_{I}$ $d_{I}^{2}$ $f_{I}d_{I}^{2}$
0-10 5 3 15 -2 -6 4 12
10-20 15 5 75 -1 -5 1 5
20-30 25 8 200 0 0 0 0
30-40 35 3 105 1 3 1 3
40-50 45 1 45 2 2 4 4
20 440 -6 24

$Mean \overline{x}=\frac{\sum f_{i} x_{i}}{N}$

$\therefore \overline{x}=\frac{440}{20}$

$\therefore \overline{x}=22$

$\begin{aligned} S \cdot D \cdot=\sigma &=\sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}-\left(\frac{\sum f_{i} d_{i}}{N}\right)^{2}} \times h \\ &=\sqrt{\frac{24}{20}-\left(\frac{-6}{20}\right)^{2}} \times 10 \\ &=10.54 \end{aligned}$

$\begin{aligned} \text { Coefficient of variance } &=\frac{\sigma}{x} \times 100 \\ &=\frac{10.54}{22} \times 100 \\ &=47.91 \end{aligned}$

Please log in to add an answer.