0
2.6kviews
Resolve into partial fractions x4x3+1
1 Answer
0
366views

Solution:

x3x3+1)¯x4x4+xx

x4x3+1=xxx3+1xx3+1=x(x+1)(x2x+1)=Ax+1+Bx+Cx2x+1x=(x2x+1)A+(x+1)(Bx+C) Put x=11=3AA=13

 Put x=00=(1)A+(1)C0=13+CC=13

Putx=1

1=(1)A+2(B+C)

1=13+2B+23

113=2B

23=2B

B=13

x(x+1)(x2x+1)=13x+1+13x+13x2x+1

x4x3+1=x13x+1+13x+13x2x+1

Please log in to add an answer.