0
2.6kviews
Resolve into partial fractions x4x3+1
1 Answer
written 5.6 years ago by |
Solution:
x3x3+1)¯x4x4+x−−−x
x4x3+1=x−xx3+1xx3+1=x(x+1)(x2−x+1)=Ax+1+Bx+Cx2−x+1∴x=(x2−x+1)A+(x+1)(Bx+C) Put x=−1∴−1=3A∴A=−13
Put x=00=(1)A+(1)C0=−13+C∴C=13
Putx=1
∴1=(1)A+2(B+C)
∴1=−13+2B+23
∴1−13=2B
∴23=2B
∴B=13
∴x(x+1)(x2−x+1)=−13x+1+13x+13x2−x+1
x4x3+1=x−−13x+1+13x+13x2−x+1