0
1.3kviews
If A = $\left[\begin{array}{lll}{2} & {4} & {4} \\ {4} & {2} & {4} \\ {4} & {4} & {2}\end{array}\right]$ show that $A^{2} - 8A$ is scalar matrix.
1 Answer
0
193views
written 5.2 years ago by |
Solution:
$A^{2} - 8A$
$= A.A - 8A$
$=\left[\begin{array}{lll}{2} & {4} & {4} \\ {4} & {2} & {4} \\ {4} & {4} & {2}\end{array}\right]\left[\begin{array}{lll}{2} & {4} & {4} \\ {4} & {2} & {4} \\ {4} & {4} & {2}\end{array}\right]-8\left[\begin{array}{rrr}{2} & {4} & {4} \\ {4} & {2} & {4} \\ {4} & {4} & {2}\end{array}\right]$
$=\left[\begin{array}{ccc}{36} & {32} & {32} \\ {32} & {36} & {32} \\ {32} & {32} & {36}\end{array}\right]-\left[\begin{array}{ccc}{16} & {32} & {32} \\ {32} & {16} & {32} \\ {32} & {32} & {16}\end{array}\right]$
$=\left[\begin{array}{ccc}{20} & {0} & {0} \\ {0} & {20} & {0} \\ {0} & {0} & {20}\end{array}\right]$
$\therefore A^{2}-8 A is scalar matrix$
ADD COMMENT
EDIT
Please log in to add an answer.