0
645views
Prove $: \tan \left(\frac{\pi}{4}+A\right)=\frac{\cos A+\sin A}{\cos A-\sin A}$
1 Answer
written 5.2 years ago by |
Solution:
$\tan \left(\frac{\pi}{4}+A\right)$
$=\frac{\tan \frac{\pi}{4}+\tan A}{1-\tan \frac{\pi}{4} \tan A}$
$=\frac{1+\tan \frac{\pi}{4} \tan A}{1-\tan \frac{\pi}{4}}$
$=\frac{1+\tan A}{1-\tan A}$
$=\frac{1+\frac{\sin A}{\cos A}}{1-\frac{\sin A}{\cos A}}$
$=\frac{\cos A+\sin A}{\cos A-\sin A}$