0
748views
Find the value of $sin(15^{o})$ using compound angles
1 Answer
0
16views

Solutioin:

$\sin \left(15^{\circ}\right)$

$=\sin \left(45^{\circ}-30^{\circ}\right)$

$=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}$

$=\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$

$=\frac{\sqrt{3}-1}{2 \sqrt{2}} \quad or 0.2588$

Please log in to add an answer.