0
532views
Resolve into partial fractions $\frac{2 x+1}{(x-1)\left(x^{2}+1\right)}$
1 Answer
0
1views
written 5.2 years ago by |
Solution:
$\frac{2 x+1}{(x-1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}$
$\therefore 2 x+1=\left(x^{2}+1\right) A+(x-1)(B x+C)$
Put x=1
$\therefore 2(1)+1=\left(1^{2}+1\right) A$
$\therefore A=\frac{3}{2}$
Put x=0
$\therefore 2(0)+1=(0+1) A+(0-1)(B(0)+C)$
$\therefore 1=A-C$
$\therefore 1=\frac{3}{2}-C$
$\therefore C=\frac{1}{2}$
Put x=-1
$\therefore 2(-1)+1=\left((-1)^{2}+1\right) A+(-1-1)(B(-1)+C)$
$\therefore-1=2 A+2 B-2 C$
$\therefore-1=2\left(\frac{3}{2}\right)+2 B-2\left(\frac{1}{2}\right)$
$\therefore-1=3+2 B-1$
$\therefore B=-\frac{3}{2}$
$\therefore \frac{2 x+1}{(x-1)\left(x^{2}+1\right)}=\frac{\frac{3}{2}}{x-1}+\frac{-\frac{3}{2} x+\frac{1}{2}}{x^{2}+1}$
ADD COMMENT
EDIT
Please log in to add an answer.