0
552views
Resolve into partial fractions 2x+1(x−1)(x2+1)
1 Answer
written 5.6 years ago by |
Solution:
2x+1(x−1)(x2+1)=Ax−1+Bx+Cx2+1
∴2x+1=(x2+1)A+(x−1)(Bx+C)
Put x=1
∴2(1)+1=(12+1)A
∴A=32
Put x=0
∴2(0)+1=(0+1)A+(0−1)(B(0)+C)
∴1=A−C
∴1=32−C
∴C=12
Put x=-1
∴2(−1)+1=((−1)2+1)A+(−1−1)(B(−1)+C)
∴−1=2A+2B−2C
∴−1=2(32)+2B−2(12)
∴−1=3+2B−1
∴B=−32
∴2x+1(x−1)(x2+1)=32x−1+−32x+12x2+1