0
648views
prove that $\frac{\sin 3 A-\sin A}{\cos 3 A+\cos A}=\tan A$
1 Answer
written 5.2 years ago by |
Solution:
$\mathrm{LHS}=\frac{\sin 3 A-\sin A}{\cos 3 A+\cos A}$
$=\frac{2 . \cos \left(\frac{3 A+A}{2}\right) \cdot \sin \left(\frac{3 A-A}{2}\right)}{2 . \cos \left(\frac{3 A+A}{2}\right) \cdot \cos \left(\frac{3 A-A}{2}\right)}$
$=\frac{2 \cos 2 A \sin A}{2 \cos 2 A \cdot \cos A}$
$=\tan A$
$=\mathrm{RHS}$