0
3.0kviews
If A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}. Find X such that 2X +3A - 4B = I.
1 Answer
0
386views

Solution:

2X + 3A -4B = I

2X + 3 \begin{bmatrix} 3 & -1 \ 2 & 4 \end{bmatrix} - 4 \begin{bmatrix} 1 & 2 \ -3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}

2X + \begin{bmatrix} 9 & -3 \ 6 & 12 \end{bmatrix} - \begin{bmatrix} 4 & 8 \ -12 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}

2X + \begin{bmatrix} 5 & -11 \ 18 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}

2X = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & -11 \ 18 & 12 \end{bmatrix}

2X = \begin{bmatrix} -4 & 11 \ -18 & -11 \end{bmatrix}

$X =\frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Please log in to add an answer.