0
749views
Find standard deviation

| class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |

And there respective frequency is given by,

| Frequency: | 3 | 5 | 8 | 3 | 1 |

Find the standard deviation.

1 Answer
0
1views

Solution:

Class $f_i$ $x_i$ $u_i$ $ui^2$ $fiui$ $fiui^2$
0-10 3 5 -2 4 -6 12
10-20 5 15 -1 1 5 5
20-30 8 25=A 0 0 0 0
30-40 3 35 1 1 3 3
40-50 1 45 2 4 4 4
$\sum \mathrm{f}{\mathrm{i}}=$20 $\sum \mathrm{u}{\mathrm{i}} \mathrm{f}{\mathrm{i}}$= 6 $\sum \mathrm{u}{\mathrm{i}}^{2} \mathrm{f}{\mathrm{i}}$= 24

Mean:

$\overline{\mathrm{X}}=\mathrm{A}+\mathrm{h}\left(\frac{\sum \mathrm{u}{\mathrm{i}} \mathrm{f}{\mathrm{i}}}{\mathrm{N}}\right)$

$ =25+10\left(\frac{6}{20}\right)$

= 28

Variance:

$ \operatorname{Var}(X)=h^{2}\left[\frac{1}{N} \sum_{i=1}^{n} f_{i} u_{i}^{2}-\left(\frac{1}{N} \sum_{i=1}^{n} u_{i} f_{i}\right)^{2}\right] $

$ =100\left[\frac{24}{20}-\frac{36}{400}\right] $

$ =100[1.2 - 0.09] $

$ =111 $

Standard Deviation:

$\sigma=\sqrt{111}$

= 10.53

The standard deviation is $10.53$

Please log in to add an answer.