written 5.2 years ago by | modified 2.6 years ago by |
| class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
And there respective frequency is given by,
| Frequency: | 3 | 5 | 8 | 3 | 1 |
Find the standard deviation.
written 5.2 years ago by | modified 2.6 years ago by |
| class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
And there respective frequency is given by,
| Frequency: | 3 | 5 | 8 | 3 | 1 |
Find the standard deviation.
written 2.6 years ago by |
Solution:
Class | $f_i$ | $x_i$ | $u_i$ | $ui^2$ | $fiui$ | $fiui^2$ |
---|---|---|---|---|---|---|
0-10 | 3 | 5 | -2 | 4 | -6 | 12 |
10-20 | 5 | 15 | -1 | 1 | 5 | 5 |
20-30 | 8 | 25=A | 0 | 0 | 0 | 0 |
30-40 | 3 | 35 | 1 | 1 | 3 | 3 |
40-50 | 1 | 45 | 2 | 4 | 4 | 4 |
$\sum \mathrm{f}{\mathrm{i}}=$20 | $\sum \mathrm{u}{\mathrm{i}} \mathrm{f}{\mathrm{i}}$= 6 | $\sum \mathrm{u}{\mathrm{i}}^{2} \mathrm{f}{\mathrm{i}}$= 24 |
Mean:
$\overline{\mathrm{X}}=\mathrm{A}+\mathrm{h}\left(\frac{\sum \mathrm{u}{\mathrm{i}} \mathrm{f}{\mathrm{i}}}{\mathrm{N}}\right)$
$ =25+10\left(\frac{6}{20}\right)$
= 28
Variance:
$ \operatorname{Var}(X)=h^{2}\left[\frac{1}{N} \sum_{i=1}^{n} f_{i} u_{i}^{2}-\left(\frac{1}{N} \sum_{i=1}^{n} u_{i} f_{i}\right)^{2}\right] $
$ =100\left[\frac{24}{20}-\frac{36}{400}\right] $
$ =100[1.2 - 0.09] $
$ =111 $
Standard Deviation:
$\sigma=\sqrt{111}$
= 10.53
The standard deviation is $10.53$