0
2.8kviews
Using matrix inversion method , save x + y + z = 3; x + 2y + 3z = 4; x + 4y 9z = 6
1 Answer
0
206views

Solution:

let A = \begin{bmatrix} 1 & 1 & 1\ 1 & 2 & 3\ 1 & 4 & 9 \end{bmatrix}

|A| = \begin{vmatrix} 1 & 1 & 1 \ 1 & 2 & 3\ 1 & 4 & 9 \end{vmatrix}

$|A| = 1(18-12)-1(9-3)+1(4-2)$

$|A| = 2 \neq 0$

$A^{-1} exists$

$Matrix of minors = \quad \begin{bmatrix} \quad \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} \\ \quad \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix}\\ \quad \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \\ \end{bmatrix} $

= \begin{bmatrix} 6 & 6 & 2 \ 5 & 8 & 3\ 1 & 2 &1 \end{bmatrix}

$Matrix of cofactors = \quad \begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3\\ 1 & -2 & 1 \end{bmatrix}$

Please log in to add an answer.