written 5.2 years ago by | • modified 5.2 years ago |
Solution:
let A = \begin{bmatrix} 1 & 1 & 1\ 1 & 2 & 3\ 1 & 4 & 9 \end{bmatrix}
|A| = \begin{vmatrix} 1 & 1 & 1 \ 1 & 2 & 3\ 1 & 4 & 9 \end{vmatrix}
$|A| = 1(18-12)-1(9-3)+1(4-2)$
$|A| = 2 \neq 0$
$A^{-1} exists$
$Matrix of minors = \quad \begin{bmatrix} \quad \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} \\ \quad \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix}\\ \quad \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} & \quad \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \\ \end{bmatrix} $
= \begin{bmatrix} 6 & 6 & 2 \ 5 & 8 & 3\ 1 & 2 &1 \end{bmatrix}
$Matrix of cofactors = \quad \begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3\\ 1 & -2 & 1 \end{bmatrix}$