0
4.0kviews
Prove that sin4A+sin5A+sin6Acos4A+cos5A+cos6A=tan5A
1 Answer
0
811views

Solution:

L.H.S = sin4A+sin5A+sin6Acos4A+cos5A+cos6A

=sin4A+sin6A+sin5Acos4A+cos6A+cos5A

=2sin(4A+6A2)cos(4A6A2)+sin5A2cos(4A+6A2)cos(4A6A2)+cos5A

=2sin5Acos(A)+sin5A2cos5Acos(A)+cos5A

=sin5A(2cos(A)+1)cos5A(2cos(A)+1)

=tan5A

=R.H.S

Please log in to add an answer.