0
3.6kviews
Prove that $\frac{sin4A + sin5A + sin6A}{cos4A + cos5A + cos6A} = tan5A$
1 Answer
written 5.2 years ago by | • modified 5.2 years ago |
Solution:
L.H.S = $\frac{sin4A + sin5A + sin6A}{cos4A + cos5A + cos6A}$
$ = \frac{sin4A + sin6A + sin5A}{cos4A + cos6A + cos5A}$
$ = \frac{2sin\big(\frac{4A+6A}{2}\big)cos\big(\frac{4A-6A}{2}\big)+sin5A}{2cos\big(\frac{4A+6A}{2}\big)cos\big(\frac{4A-6A}{2}\big)+cos5A}$
$= \frac{2sin5Acos(-A)+sin5A}{2cos5Acos(-A)+ cos5A}$
$= \frac{sin5A(2cos(-A)+1)}{cos5A(2cos(-A)+1)}$
$= tan5A$
$=R.H.S$