0
4.0kviews
Prove that sin4A+sin5A+sin6Acos4A+cos5A+cos6A=tan5A
1 Answer
written 5.6 years ago by | • modified 5.6 years ago |
Solution:
L.H.S = sin4A+sin5A+sin6Acos4A+cos5A+cos6A
=sin4A+sin6A+sin5Acos4A+cos6A+cos5A
=2sin(4A+6A2)cos(4A−6A2)+sin5A2cos(4A+6A2)cos(4A−6A2)+cos5A
=2sin5Acos(−A)+sin5A2cos5Acos(−A)+cos5A
=sin5A(2cos(−A)+1)cos5A(2cos(−A)+1)
=tan5A
=R.H.S