0
710views
prove that : $sin(A+B)sin(A-B) = sin^{2}A-sin^{2}B$
1 Answer
written 5.2 years ago by |
Solution:
Sin(A+B)Sin(A-B)
$= (sinAcosB + cosAsinB)(sinAcosB - cosAcosB)$
$=sin^{2}Acos^{2}B - cos^{2}Asin^{2}B$
$=sin^{2}A(1 - sin^{2}B) - (1 - sin^{2}A)sin^{2}B$
$=sin^{2}A - sin^{2}Asin^{2}B - sin^{2}B + sin^{2}Asin^{2}B$
$=sin^{2}A - sin^{2}B$