0
677views
Resolve into partial fraction $\frac{x^{3}- x + 3}{(x-2)(x^{2}+1)}$
1 Answer
written 5.2 years ago by |
Solution:
$\frac{x^{2}- x + 3}{(x - 2)(x^{2}+1)} = \frac{A}{x-2} + \frac{Bx+C}{x^{2}+1}$
$x^{2} - x +3 = (x^{2}+1)A+(x-2)(Bx+C)$
Put x=2
5 = 5A
A = 1
put x = 0
3 = A - 2C
C = 1
put x = 1
3 = 2A + (-1)(B+C)
3 = 2 - B + 1
B = 0
$\frac{x^{2}- x + 3}{(x - 2)(x^{2}+1)} = \frac{1}{x-2} + \frac{0x-1}{x^{2}+1}$
$\frac{x^{2}- x + 3}{(x - 2)(x^{2}+1)} = \frac{1}{x-2} + \frac{1}{x^{2}+1}$