0
910views
If A = $\quad \begin{bmatrix} 2 & 5 & 6\\ 0 & 1 & 2 \end{bmatrix}, B = \quad \begin{bmatrix} 6 & 1 \\ 0 & 4 \\ 5 & 7 \end{bmatrix}$, Verify that $(AB)^{T} = B^{T}A^{T}$
1 Answer
0
8views

AB = \begin{bmatrix} 2 & 5 & 6 \ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 & 1 \ 0 & 4 \ 5 & 7 \end{bmatrix}

AB = \begin{bmatrix} 12+0+30 & 2+20+42 \ 0+0+10 & 0+4+14 \end{bmatrix}

AB = \begin{bmatrix} 42 & 64 \ 10 & 18 \end{bmatrix}

$(AB^{T}) = \begin{bmatrix} 42 & 10 \\ 64 & 18 \end{bmatrix}$

$B^{T}A^{T} = \quad \begin{bmatrix} 6 & 0 & 5 \\ 1 & 4 & 7 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 \\ 5 & 1 \\ 6 & 2 \end{bmatrix}$

$B^{T}A^{T} = \begin{bmatrix} 12+0+30 & 0+0+10 \\ 2+20+42 & 0+4+14 \end{bmatrix}$

$B^{T}A^{T} = \begin{bmatrix} 42 & 10 \\ 64 & 18 \end{bmatrix}$

$Hence, (AB^{T}) = B^{T}A^{T}$

Please log in to add an answer.