0
724views
prove that Cos−1(45)+Cos−1(1213)=Cos−1(3365)
1 Answer
written 5.6 years ago by |
Solution:
Put that Cos−1(45)=A
CosA=45
SinA=√1−cos2A
=√1−45
=45
PutCos−1(1213)=B
CosB=1213
SinB=√1−cos2B
=√1−144169
SinB=513
Consider,
Cos(A + B) = cosA.cosB - sinA.sinB
Cos(A+B)=(45)(1213)−(35)(513)
Cos(A+B)=3365
A+B=Cos−1(3365)
Cos−1(45)+Cos−1(1213)=Cos−1(3365)