0
693views
prove that $Cos^{-1}\big(\frac{4}{5}\big) + Cos^{-1}\big(\frac{12}{13}\big) = Cos^{-1}\big(\frac{33}{65}\big)$
1 Answer
written 5.2 years ago by |
Solution:
Put that $Cos^{-1}\big(\frac{4}{5}\big) = A$
$Cos A = \frac{4}{5}$
$Sin A = \sqrt{1 - cos^{2}A}$
$ = \sqrt{1 - \frac{4}{5}}$
$ = \frac{4}{5}$
$Put Cos^{-1}\big(\frac{12}{13}\big) = B$
$Cos B = \frac{12}{13}$
$Sin B = \sqrt{1 - cos^{2}B}$
$ = \sqrt{1 - \frac{144}{169}}$
$ Sin B = \frac{5}{13}$
Consider,
Cos(A + B) = cosA.cosB - sinA.sinB
$Cos(A + B) = \big(\frac{4}{5}\big) \big(\frac{12}{13}\big) - \big(\frac{3}{5}\big) \big(\frac{5}{13}\big)$
$Cos(A + B) = \frac{33}{65}$
$A + B = Cos^{-1}\big(\frac{33}{65}\big)$
$Cos^{-1}\big(\frac{4}{5}\big) + Cos^{-1}\big(\frac{12}{13}\big) = Cos^{-1}\big(\frac{33}{65}\big)$