0
1.6kviews
prove that cos20cos40cos60cos80 = $\frac{1}{16}$
1 Answer
written 5.2 years ago by |
Solution:
L.H.S = cos20cos40cos60cos80
= cos20cos40$\frac{1}{2}$cos80
= $\frac{1}{4}$(2cos20cos40)cos80
= $\frac{1}{4}$(cos60 + cos20)cos80
= $\frac{1}{4}\big(\frac{1}{2} + Cos20\big)Cos80$
= $\frac{1}{4}\big(\frac{1}{2}Cos80 + Cos20Cos80\big)$
= $\frac{1}{8}(Cos80 + 2Cos20Cos80)$
= $\frac{1}{8}$(Cos80 + Cos100 + Cos60)
= $\frac{1}{8}\big(Cos80 + Cos100 + \frac{1}{2}\big)$
= $\frac{1}{4}\big(Cos80 + Cos(\pi - 80) + \frac{1}{2}\big)$
= $\frac{1}{8}\big(Cos80 - Cos80 + \frac{1}{2} \big)$
= $\frac{1}{16}$
R.H.S