0
742views
If $A = 30^{o}$, verify that i) sin2A = 2sinAcosA ii) cos2A = $\frac{1-tan_{2}A}{1+tan_{2}A}$
1 Answer
written 5.2 years ago by |
Solution:
I) L.H.S = sin2A
= $sin2(30^{o})$
= $2sin60^{o}$
= $\frac{\sqrt{3}}{2}$
R.H.S = 2Sin2CosA
$= 2Sin30^{0}Cos30^{o}$
$= 2\big(\frac{1}{2}\big)\big(\frac{\sqrt{3}}{2}\big)$
$= \frac{\sqrt{3}}{2}$
hence, SIn2A = 2SinACosA
ii) L.H.S = $ cos2A = cos2(30^{o})$
$= cos60^{o}$
$= \frac{1}{2}$
R.H.S = $\frac{1-tan^{2}A}{1+tan^{2}A}$
$= \frac{1-tan^{2}30^{o}}{1+tan^{2}30^{o}}$
$= \frac{1- {\big(\frac{1}{\sqrt{3}}\big)^{2}}}{1+ {\big(\frac{1}{\sqrt{3}}\big)^{2}}}$
$ = \frac{1}{2}$
hence, $Cos2A = \frac{1-tan^{2}A}{1+tan^{2}A}$