0
3.7kviews
Resolve into partial fractions : $\frac{x+3}{(x-1)(x+1)(x+5)}$
1 Answer
written 5.2 years ago by |
Solution:
$\frac{x+3}{(x-1)()x+1)(x+5)}$ = $\frac{A}{x-1}$ + $\frac{B}{x+1}$ + $\frac{C}{x+5}$
therefore, x+3 = A(x+1)(x+5) +B (x-1)(x+5) +C(x-1)(x+1)
put x = 1
4=A(2)(6)
4=12A
hence, A = $\frac{1}{3}$
put x = -1
-1 + 3 = B(-2)(4)
2 = -8B
hence, B = $-\frac{1}{4}$
put x = -5
-5 + 3 = C(-6)(-4)
-2 = 24C
hence, C = $\frac{-1}{12}$
$\frac{x+3}{(x-1)()x+1)(x+5)}$ = $\frac{\frac{1}{3}}{x-1}$ + $\frac{-\frac{1}{4}}{x+1}$ + $\frac{-\frac{1}{12}}{x+5}$