0
803views
If the volume of the sphere is $\frac{4 \small \pi}{3} cm^{3}$. Find its surface area
2 Answers
0
2views

Solution:

Volume of sphere $=\frac{4}{3} \pi r^{3}$ \begin{aligned} \therefore \frac{4 \pi}{3} &=\frac{4}{3} \pi r^{3} \ 1=& r^{3} \ \therefore r=1 \ \text { Surface area of sphere } &=4 \pi r^{2} \ &=4 \pi(1)^{2} \ &=4 \pi \text { OR } 12.56 \mathrm{cm}^{2} \end{aligned}

0
1views

Solution:

Volume of sphere $=\frac{4}{3} \pi r^{3}$ \begin{aligned} \therefore \frac{4 \pi}{3} &=\frac{4}{3} \pi r^{3} \ 1=& r^{3} \ \therefore r=1 \ \text { Surface area of sphere } &=4 \pi r^{2} \ &=4 \pi(1)^{2} \ &=4 \pi \text { OR } 12.56 \mathrm{cm}^{2} \end{aligned}

Please log in to add an answer.