written 5.4 years ago by |
Q) The following data was recorded in orthogonal operation machining with carbide tipped roof.
Cutting speed = 120 m/min
Tool rake angle = 10°
Feed = 0.2mm/rev
Depth of cut = 2mm
Chip thickness = 0.45mm
Cutting force = 185kgs
Feed force = 75kg
Calculate:
Shear angle ($\phi$)
1] Chip thickness ratio
2] Resultant force
3] Shear angle
4] Length of shear plane
5] Frictional force
6] Friction angle
7] Normal compressive force
8] Coefficient of friction
9] Shear force
10] Shear velocity
Solution:
Given:
Cutting speed = V = 120 m/min = 2m/sec
Tool rake angle = r = $10^{\circ}$
Width of cut = b = 2mm
Uncut thickness = t = 0.45mm,
Fp = 185kg, Fq = 75Kg
$r_{c}=\frac{t}{t_{c}}=\frac{0.2^{\prime}}{0.45}=0.444^{\prime}$
$\tan \emptyset=\frac{r_{c} \cos \gamma}{1-r_{c} \sin \gamma}=\frac{0.444 \cos 10}{1-0.444 \sin 10}=\frac{0.4373}{0.9229}=0.4738$
$\emptyset=25.35^{\circ}$
$R=\sqrt{F_{p}^{2}+F_{q}^{2}}$
$R=\sqrt{185^{2}+75^{2}}=199.62 K g$
$F_{s}=F_{p} \cos \emptyset-F_{q} \sin \emptyset$
$=185 \cos 25.35-75 \sin 25.35$
$=135.08 \mathrm{kg}$
$F = F_p sinγ+F_q cosγ$
$=185 \sin 10+75 \cos 10$
$=106 N$
$N=F_{p} \cos \gamma-F_{q} \sin \gamma$
$=105 \cos 10-75 \sin 10$
$=169 N$
$\mu=\tan \beta$
$\mu=\frac{F_{q}+F_{p} \text { tany }}{F_{p}-F_{q} \text { tany }}=\frac{75+185 \tan 10}{185-75 \tan 10}=\frac{107.62}{171.78}=0.6265$
$\beta=32.07^{\circ}$
$V_{s}=\frac{V \cos \gamma}{\cos (\emptyset-\gamma)}=\frac{2 \times \cos 10}{\cos 15.35}=2.04 \mathrm{m} / \mathrm{sec}$