Given :-
$I_Q = I_O = 100 \mu A$
$R_O = 20 M\Omega$
$I_{REF} = 150 \mu A$
$V^+ = 3.3V$
$V^- = -3.3V$
$V_{DS2(sat)} = -2.2V$
$(\dfrac {W}{L})_1 =(\dfrac {W}{L})_2 = (\dfrac {W}{L})_3 = 1$
Assume $V_{TN} = 0.4V$
Now,
$\dfrac {1}{R_O} = \lambda I_O$
Therefore,
$\lambda = \dfrac {1}{R_O I_O} = \dfrac {1}{(20 \times 10^6) (100 \times 10^{-6})} = 0.5 \times 10^{-3}$
Now,
$V_{DS2(sat)} = V_{GS2} - V_{TN2}$
Therefore,
$-2.2 = V_{GS2} - 0.4$
$V_{GS2} = -1.8V = V_{GS1}$
Now,
$I_{REF} = K_{n1}(V_{GS1} - V_{TN1})^2$
Therefore,
$150 \times 10^{-6} = K_{n1}(-1.8 - 0.4)^2$
$K_{n1} = 31 \mu A/ V^2$
Now,
$I_{O} = K_{n2}(V_{GS2} - V_{TN2})^2$
Therefore,
$100 \times 10^{-6} = K_{n2}(-1.8 - 0.4)^2$
$K_{n2} = 20.6 \mu A/ V^2$
Now,
$V_{GS3} = (V^+ - V^-) - V_{GS1} = (3.3 - (-3.3)) - (-1.8) = 8.4V$
Also,
$I_{REF} = K_{n3}(V_{GS3} - V_{TN})^2$
Therefore,
$150 \times 10^{-6} = K_{n3}(8.4 - 0.4)^2$
$K_{n3} = 2.3 \mu A/ V^2$