0
1.2kviews
Parametric Representation of a Circle
1 Answer
0
5views

enter image description here

$x= rcos\theta$

$y=rsin\theta$

where $0\le \theta \le 2\pi$........................(1)

If uniformly spaced points lie on the periphery of the circle, then $\delta \theta=$consatnt (increament in angle)

$\therefore$ (1) can be expressed as:-

$x_{i+1}=rcos(\theta _i+\delta \theta)$

$y_{i+1}=rsin(\theta _i+\delta \theta)$

$\therefore x_{i+1}=rcos\theta _icos \delta \theta-rsin\theta _isin \delta \theta$

$\therefore y_{i+1}=rsin\theta _icos \delta \theta+rcos\theta _isin \delta \theta$

Simplifying:

$x_{i+1}=x_icos\delta \theta-y_isin \delta \theta$

$y_{i+1}=x_isin\delta \theta-y_icos \delta \theta$

A not origin circle is obtained by considering a single origin centered unit circle(generation); then scaling and translation.

E.g. Generate a circle of radius 2 with centre located at (2,2).

Solution

  1. Generate an origin centered circle (unit radius)
  2. Scale by factor of 2
  3. Translate by (2,2) units

Assuming 8 number of points on the circle equally spaced.

(Note: Normally, a much larger number of points is required for display, depends on the radius of circle.)

$\therefore \delta \theta =\frac{2\pi ^c}{8}=\frac{\pi ^c}{4}=45^o$

enter image description here

Starting with point 1;

$x_1=rcos\theta _1=1cos 0=1$

$y_1=rsin\theta _1=1sin 0=0$

$\therefore$ Using parametric equations;

we get the x and y values of the other points also.

$\therefore x_2=x_1cos\delta \theta-y_1sin\delta \theta$

$\therefore y_2=x_1sin\delta \theta+y_1cos\delta \theta$

Here; $sin\delta \theta=cos\delta \theta (\because \theta = 45)$

$=\frac{1}{\sqrt 2}$

$\therefore x_2=\frac{1}{\sqrt 2}$

$y_2=\frac{1}{\sqrt 2}$

Hence; the results for the unit circle can be translated as:-

i $x_i$ $y_i$
1 1 0
2 $\frac{1}{\sqrt 2}$ $\frac{1}{\sqrt 2}$
3 0 1
4 $-\frac{1}{\sqrt 2}$ $\frac{1}{\sqrt 2}$
5 -1 0
6 $\frac{1}{\sqrt 2}$ $-\frac{1}{\sqrt 2}$
7 0 -1
8 $\frac{1}{\sqrt 2}$ $-\frac{1}{\sqrt 2}$

Q. Generate a circle of radius 4 width center located at (2, 2)

Sr. No. $\theta$ $x=x_{c}+r \cos\theta$ $y=y_{c}+r \sin \theta$
1 $0^o$ 6 2
2 $45^o$ 4.8284 4.8284
3 $90^o$ 2 6
4 $135^o$ -0.828 4.8284
5 $180^o$ -2 2
6 $225^o$ -0.828 -0.828
7 $270^o$ 2 -2
8 $315^o$ 4.8284 -0.828
9 $360^o$ 6 2

Q. Generate a circle (0 to $90^o$ ) of radius 4 width center located at (2, 2) in incremental co-ordinate.

Sr No $\theta$ $x_i$ $y_i$ $x = x_c + rcos \theta$ $y = y_c + rsin \theta$
1 $0^o$ - - 6 2
2 $30^o$ 6 2 5.464 4
1 $60^o$ 5.464 4 3.999 5.464
1 $90^o$ 4 5.464 2 6

enter image description here

Please log in to add an answer.