0
1.3kviews
Parametric Representation of a Circle
1 Answer
0
5views

enter image description here

x=rcosθ

y=rsinθ

where 0θ2π........................(1)

If uniformly spaced points lie on the periphery of the circle, then δθ=consatnt (increament in angle)

(1) can be expressed as:-

xi+1=rcos(θi+δθ)

yi+1=rsin(θi+δθ)

xi+1=rcosθicosδθrsinθisinδθ

yi+1=rsinθicosδθ+rcosθisinδθ

Simplifying:

xi+1=xicosδθyisinδθ

yi+1=xisinδθyicosδθ

A not origin circle is obtained by considering a single origin centered unit circle(generation); then scaling and translation.

E.g. Generate a circle of radius 2 with centre located at (2,2).

Solution

  1. Generate an origin centered circle (unit radius)
  2. Scale by factor of 2
  3. Translate by (2,2) units

Assuming 8 number of points on the circle equally spaced.

(Note: Normally, a much larger number of points is required for display, depends on the radius of circle.)

δθ=2πc8=πc4=45o

enter image description here

Starting with point 1;

x1=rcosθ1=1cos0=1

y1=rsinθ1=1sin0=0

Using parametric equations;

we get the x and y values of the other points also.

x2=x1cosδθy1sinδθ

y2=x1sinδθ+y1cosδθ

Here; sinδθ=cosδθ(θ=45)

=12

x2=12

y2=12

Hence; the results for the unit circle can be translated as:-

i xi yi
1 1 0
2 12 12
3 0 1
4 12 12
5 -1 0
6 12 12
7 0 -1
8 12 12

Q. Generate a circle of radius 4 width center located at (2, 2)

Sr. No. θ x=xc+rcosθ y=yc+rsinθ
1 0o 6 2
2 45o 4.8284 4.8284
3 90o 2 6
4 135o -0.828 4.8284
5 180o -2 2
6 225o -0.828 -0.828
7 270o 2 -2
8 315o 4.8284 -0.828
9 360o 6 2

Q. Generate a circle (0 to 90o ) of radius 4 width center located at (2, 2) in incremental co-ordinate.

Sr No θ xi yi x=xc+rcosθ y=yc+rsinθ
1 0o - - 6 2
2 30o 6 2 5.464 4
1 60o 5.464 4 3.999 5.464
1 90o 4 5.464 2 6

enter image description here

Please log in to add an answer.