written 5.3 years ago by |
(i) The composite transformation matrix
(ii) The new coordinates of rectangle.
Solution:
Steps:
Translate Point P(3,2) to origin O(0,0)
Rotate the object by $ \theta= + 30^o$
Inverse translation of Point P to its original position P(3,2) from origin O(0,0)
Step 1:
Translation Matrix is given as:
$$\left[\mathrm{T}_{\mathrm{r}}\right]=\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {\mathrm{tx}} & {\text { ty }} & {1}\end{array}\right] \quad \mathrm{tx}=-3 \quad \& \ ty =-2$$
$$\therefore[\mathrm{Tr}]=\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {-3} & {-2} & {1}\end{array}\right]$$
Step 2:
Note: CCw is taken as +ve angle and CW is taken as –ve angle. Rotation Matrix is given as,
$$\begin{array}{lll}{[\mathrm{R}]} & {=\left[\begin{array}{ccc}{\cos \theta} & {\sin \theta} & {0} \\ {-\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right]}\end{array}$$
$$\theta = +30^0$$
$$[\mathrm{R}]=\left[\begin{array}{ccc}{\cos 30} & {\sin 30} & {0} \\ {-\sin 30} & {\cos 30} & {0} \\ {0} & {0} & {1}\end{array}\right]=\left[\begin{array}{ccc}{0.866} & {0.5} & {0} \\ {-0.5} & {0.866} & {0} \\ {0} & {0} & {1}\end{array}\right]$$
Step 3:
$$[\mathrm{Tr}]^{-1}=\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {\mathrm{tx}} & {\text { ty }} & {1}\end{array}\right]=\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {3} & {2} & {1}\end{array}\right]$$
Now,
i. The composite Transformation Matrix / Affine Matrix
$$[\mathrm{T}] \quad=\left[\operatorname{Tr}[\mathrm{R}][\mathrm{Tr}]^{-1}\right.$$
$$=\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {-3} & {-2} & {1}\end{array}\right]\left[\begin{array}{ccc}{0.866} & {0.5} & {0} \\ {-0.5} & {0.866} & {0} \\ {0} & {0} & {1}\end{array}\right]\left[\begin{array}{ccc}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {3} & {2} & {1}\end{array}\right]$$
$$=\left[\begin{array}{ccc}{0.866} & {0.5} & {0} \\ {-0.5} & {0.866} & {0} \\ {1.4} & {-1.23} & {1}\end{array}\right]$$
ii. The new coordinates of rectangle
$$ \left[\mathrm{X}^{\prime}\right]=[\mathrm{X}][\mathrm{T}] $$
$$\left[\begin{array}{l}{\mathrm{A}^{\prime}} \\ {\mathrm{B}^{\prime}} \\ {\mathrm{C}^{\prime}}\\{\mathrm{D}^{\prime}}\end{array}\right]=\left[\begin{array}{l}{\mathrm{A}} \\ {\mathrm{B}} \\ {\mathrm{C}}\\{\mathrm{D}}\end{array}\right][\mathrm{T}]$$
$$=\left[\begin{array}{ccc}{1} & {1} & {1} \\ {2} & {1} & {1} \\ {2} & {3} & {1} \\ {1} & {3} & {1}\end{array}\right]\left[\begin{array}{ccc}{0.866} & {0.5} & {0} \\ {-0.5} & {0.866} & {0} \\ {1.4} & {-1.23} & {1}\end{array}\right]$$
$$=\left[\begin{array}{llll}{1.77} & {0.136} & {1} \\ {2.63} & {0.636} & {1} \\ {1.63} & {2.368} & {1} \\ {0.77} & {1.868} & {1}\end{array}\right]$$
Hence, new coordinates of rectangle are:
$$\mathrm{A}^{\prime}=(1.77,0.136)$$ $$\mathrm{B}^{\prime}=(2.63,0.636)$$ $$\mathrm{C}^{\prime}=(1.63,2.368)$$ $$\mathrm{D}^{\prime}=(0.77,1.868)$$