0
573views
Generate a circle (0 to $90^o$ ) of radius 4 width center located at (2, 2) in incremental co-ordinate.
1 Answer
0
6views
written 5.3 years ago by |
Sr No | $\theta$ | $x_i$ | $y_i$ | $x = x_c + rcos \theta$ | $y = y_c + rsin \theta$ |
---|---|---|---|---|---|
1 | $0^o$ | - | - | 6 | 2 |
2 | $35^o$ | 6 | 2 | 5.464 | 4 |
1 | $60^o$ | 5.464 | 4 | 3.999 | 5.464 |
1 | $90^o$ | 4 | 5.464 | 2 | 6 |
Parametric Representation of a ellipse:
$x=x_{c}+a \cos \theta \quad 0 \leq \theta \leq 2 \pi$
$y=y_{c}+\operatorname{asin} \theta$
$\cos \theta=\frac{x-x_{c}}{a}$
$\sin \theta=\frac{y-y_{c}}{b}$
Incremental:
$\begin{aligned} x_{i+1} &=x_{c}+\operatorname{acos}(\theta+\delta \theta) \\ &=x_{c}+\mathrm{a}[\cos \theta \cdot \cos \delta \theta-\sin \theta \cdot \sin \delta \theta] \end{aligned}$
$\therefore x_{i+1}=x_{c}+\left[\left(x_{i}-x_{c}\right) \cos \delta \theta+\frac{a}{b}\left(y_{i}-y_{c}\right) \sin \delta \theta\right]$
$\therefore y_{i+1}=y_{c}+\left[\left(y_{i}-y_{c}\right) \cos \delta \theta+\frac{b}{a}\left(x_{i}-x_{c}\right) \sin \delta \theta\right]$
ADD COMMENT
EDIT
Please log in to add an answer.