written 5.3 years ago by |
Solution:
$P(t)=P_{0}+\left(P_{1}-P_{0}\right) t$
$\begin{aligned} x(t)=P_{x} &=x_{0}+\left(x_{1}-x_{0}\right) t \\ &=1+(4-1) t \\ P_{x} &=1+3 t \end{aligned}$
$\begin{aligned} y(t)=P_{y} &=y_{0}+\left(y_{1}-y_{0}\right) t \\ &=2+(3-2) t \\ P_{y} &=2+t \end{aligned}$
Slope $=\frac{d_{y}}{d_{x}}=\frac{1}{3}$
Tangent Vector,
$\begin{aligned} P^{1} &=\left[x^{1}(t) \quad y^{1}(t)\right] \\ &=[3 \quad 1] \\ \therefore \vec{V} &=3 i+j \end{aligned}$
Parametric Representation of a circle:
1) Center of circle is at origin $0 \leq \theta \leq 2 \pi$
$x=r \cos \theta$
$y=r \sin \theta$
2) Center of circle is not at origin
$x=x_{c}+r \cos \theta$
$y=y_{c}+r \sin \theta$
$x_{i}=r \cos \theta i, y_{i}=r \sin \theta i$
$x_{i}+1=r \cos (\theta i+\delta \theta)$
$y_{i}+1=r \sin (\theta i+\delta \theta)$
$x_{i}+1=r[\cos \theta i \cdot \cos \delta \theta-\sin \theta i \cdot \sin \delta \theta]$
$\therefore x_{i}+1=x_{i} \cos \delta \theta-y_{i} \sin \delta \theta ]$
$\begin{aligned} y_{i}+1 &=r[\sin \theta i . \cos \delta \theta+\cos \theta i . \sin \delta \theta] \\ &=y_{i} \cos \delta \theta+x_{i} \sin \delta \theta \\ \therefore y_{i}+1&=x_{i} \sin \delta \theta-y_{i} \cos \delta \theta \end{aligned}$