written 5.3 years ago by |
Solution:
No. of points = 4 = k
Degree of curve $=(\mathrm{n})=\mathrm{k}-1=4-1=3$
$\therefore$ Cubic Curve
$P(t)=P_{0}(1-t)^{3}+3 P_{1}(1-t)^{2} t+3 P_{2}(1-t) t^{2}+P_{3} t^{3}$
$P_{0}=\left[\begin{array}{ll}{20} & {20}\end{array}\right]$
$P_{1}=\left[\begin{array}{ll}{60} & {80}\end{array}\right]$
$P_{2}=\left[\begin{array}{ll}{120} & {100}\end{array}\right]$
$P_{3}=\left[\begin{array}{ll}{150} & {30}\end{array}\right]$
$\begin{aligned} P_{x} &=20(1-t)^{3}+3(60)(1-t)^{2} t+3(120)(1-t) t^{2}+150 t^{3} \\ &=20\left(1-3 t+3 t^{2}-t^{3}\right)+180\left(1-2 t+t^{2}\right) t+360\left(t^{2}-t^{3}\right)+150 t^{3} \end{aligned}$
$=20-60 t+60 t^{2}-20 t^{3}+180 t-360 t^{2}+180 t^{3}+360 t^{2}-360 t^{3}+150 t^{3}$
$\therefore P_{x}=20+120 t+60 t^{2}-50 t^{3}$
$\begin{aligned} P_{y} &=20\left(1-3 t+3 t^{2}-t^{3}\right)+240\left(1-2 t+t^{2}\right) t+300\left(t^{2}-t^{3}\right)+30 t^{3} \\ &=20-60 t+60 t^{2}-20 t^{3}+240 t-480 t^{2}+240 t^{3}+300 t^{2}-300 t^{3}+30 t^{3} \end{aligned}$
$\therefore P_{y}=20+180 t-120 t^{2}-50 t^{3}$
For Mid point, $\mathrm{t}=0.5$
$P_{x}=88.75$
$P_{y}=73.75$
Slope $=\frac{d_{y}}{d_{x}}$
$\frac{d_{y}}{d_{x}}=\frac{0+120+120 t-150 t^{2}}{0+180-240 t-150 t^{2}}$
Slope $=\frac{d y}{d_{x}}=\frac{\frac{d y}{d_{t}}}{d_{t}}=\frac{180-240 t-150 t^{2}}{120+120 t-150 t^{2}}$
$\therefore$ Slope $=0.15789$
Parametric Representation of a Line:
$P(t)=C_{0}+C_{1} t$
At start point $P(t)=P_{0}, t=0$
$\therefore P_{0}=C_{0}$
At End point $P(t)=P_{1}, t=1$
$\therefore C_{1}=P_{1}-P_{0}$
$P_{x}=x_{0}+\left(x_{1}-x_{0}\right) t$
$P_{y}=y_{0}+\left(y_{1}-y_{0}\right) t$