0
499views
Compute the respective values in the table using maximum minimum composition rule.
1 Answer
written 5.3 years ago by |
The values in Rule Strength table.
$M_{MD} \ ^{(x)} \cap M_{MG} \ ^{(y)} = \frac{3}{5}$
$M_{MD} \ (x) \cap M_{2G} \ ^{(y)} = \frac{2}{5}$
$M_{LD} \ (x) \cap M_{mG} \ ^{(y)} = \frac{1}{5}$
$M_{LD} \ (x) \cap M_{LG} \ ^{(y)} = \frac{1}{5}$
Max of all the above four value is
$M_{MD} \ ^{(x)} \cap M_{mG} \ ^{(y)} = \frac{3}{5}$
So $M_{Wash \ Time} \ ^{(z)} = \frac{3}{5}$
$\therefore$ $M_{wash \ Time} \ ^{(z)} = \frac{z – 10}{15}$
$\frac{40 – z}{15}$
$\frac{z – 10}{15} = \frac{3}{5}$
$\frac{40 – z}{15} = \frac{3}{5}$
= 31
$Z^* = \frac{z_1 + z_2}{2} = \frac{19 + 31}{2} = 25 \ mins$