written 8.5 years ago by
teamques10
★ 68k
|
•
modified 8.5 years ago
|
A random process {X(t)} with finite first and second order moments is called as weakly stationary process or wide sense stationary (WSS) if its mean is constant and the autocorrelation depends only on the difference
i.e. if $E(X(t)=μ)$ and $E(X(t)×X(t-τ))=R(τ)$
Given: X(t) = cos(λt+Y)
$$∴E(X(t))=E(cos(λt)+Y)$$
$$ =cos(λt) cos(Y)-sin(λt) sin(Y)$$
$$=cos(λt)×E(cosY)-sin(λt)E(sinY)----- (1)$$
$$ϕ(ω)=E(e^{jωY} )$$
$$=E(cos(ωY)+jsin(ωY))$$
Given ϕ(1)=0
$$E(cosY)=E(sinY)=0-----(2)$$
Using eq(2) in eq(1) we get
E(X(t))=0
$R(t_1,t_2 )=E(X(t_1 )×X(t_2 ))=E(cos(λt_1+Y)×cos(λt_2+Y)))$
$=E((cos(λt_1 )cosY-sin(λt_1 )sinY))×(cos(λt_2 )cosYsin(λt_2)sinY))$
$=cos(λt_1 ) cos(λt_2 )E(cos^2Y )+sin(λt_1 ) sin(λt_2 )E(sin^2Y )-sin(λ(t_1+t_2))E(cosYsinY)$
$=cos(λt_1 ) cos(λt_2 )E(1/2+cos2Y/2)+sin(λt_1 ) sin(λt_2 )E(1/2-cos2Y/2)-1/2 sin(λ(t_1+t_2 ))E(sin2Y)-------(4)$
Given ϕ(2)=0
E(cos2Y)=E(sin2Y)=0 -----(5)
Using eq(5) in eq(4)
$R(t_1,t_2 )=E(X(t_1 )×X(t_2 ))=1/2[cos(λt_1 ) cos(λt_2 )+sin(λt_1 ) sin(λt_2 )]$
$∴R(t_1,t_2 )=\frac{1}2 cosλ(t_1-t_2)------(6)$
From (3) and (6) we can say that X(t) is a WSS process