written 5.5 years ago by
vedantchikhale
• 890
|
•
modified 5.5 years ago
|
Since,
$W/L = 10$ and $L = 0.36 \mu m$
Therefore, $W = 3.6 \mu m$
For CS Amplifier :-
$g_m = \sqrt {2 \mu_n C_{ox} (W/L) I_D}$
$A_o = \dfrac {V^`_A \sqrt {2 \mu_n C_{ox} (WL)}}{\sqrt I_D} $
(i) For $I_D = 10 \mu A,$
$g_m = \sqrt {(2)(387 \times 10^{-6}) (10) (10 \times 10^{-6})} = 0.28 mA/V$
$A_o = \dfrac {(5 \times 10^6) \sqrt {(2)(387 \times 10^{-6}) (3.6 \times 0.36)}}{\sqrt {10 \times 10^{-6}}} = 50 V/V$
(ii) For $I_D = 100 \mu A,$
$g_m = \sqrt {(2)(387 \times 10^{-6}) (10) (100 \times 10^{-6})} = 0.88 mA/V$
$A_o = \dfrac {(5 \times 10^6) \sqrt {(2)(387 \times 10^{-6}) (3.6 \times 0.36)}}{\sqrt {100 \times 10^{-6}}} = 15.8 V/V$
(iii) For $I_D = 1 mA,$
$g_m = \sqrt {(2)(387 \times 10^{-6}) (10) (1 \times 10^{-3})} = 2.78 mA/V$
$A_o = \dfrac {(5 \times 10^6) \sqrt {(2)(387 \times 10^{-6}) (3.6 \times 0.36)}}{\sqrt {1 \times 10^{-3}}} = 5 V/V$