written 5.5 years ago by
vedantchikhale
• 890
|
•
modified 5.5 years ago
|
From figure,
$I_{D1} = I_{D3}$ i.e $k_{n1}(V_{GS1}-V_{TN1})^2(1+\lambda V_{DS1}) = k_{n3}(V_{GS3}-V_{TN3})^2(1+\lambda V_{DS3})$
Assuming $\mu_{n} , C_{ox} $ and $V_{TN}$ common for both the transistors,
Therefore,
$V_{GS1} = \sqrt {\dfrac {(W/L)_3}{(W/L)_1}} V_{GS3} + (1 - \sqrt {\dfrac {(W/L)_3}{(W/L)_1}}) V_{TN}$
where $V_{TN}$ is the threshold voltage of both transistors. From the circuit we see that
$V_{GS1} + V_{GS3} = V^+ - V^-$
Therefore,
$V_{GS1} = \dfrac {\sqrt {\dfrac {(W/L)_3}{(W/L)_1}}}{1 +\sqrt {\dfrac {(W/L)_3}{(W/L)_1} }} (V^+ - V^-) + \dfrac{1 - \sqrt {\dfrac {(W/L)_3}{(W/L)_1}}}{1 +\sqrt {\dfrac {(W/L)_3}{(W/L)_1}}} V_{TN} = V_{GS2}$
Substituting, we get
$V_{GS1} = V_{GS2} = 3.93 V$
Therefore, $V_{GS3} = (V^+ - V^-) - V_{GS1} = (10-0) - 3.93 = 6.07V$
Therefore, $I_{REF} = \dfrac {1}{2} \mu_n C_{ox} (\dfrac {W}{L})_3 (V_{GS3}-V_{TN})^2(1+\lambda V_{DS}) = 1.115 mA$
Now, $I_O = \dfrac {1}{2} \mu_n C_{ox} (\dfrac {W}{L})_2 (V_{GS2}-V_{TN})^2(1+\lambda V_{DS2}) = 0.555 mA$