0
33kviews
1. Max min composition. 2. Max product composition.
1 Answer
3
3.8kviews

Two fuzzy relations are given by,

enter image description here

Obtain fuzzy relation T as a composition between the fuzzy relation.

Solution: The composition between two fuzzy relations is obtained by,

[a] Max – min composition.

[b] Max-product composition.

[a] Max – min composition.

enter image description here

MT(x1,z1)= max [min [MR(x1,y1),MS(y1,z1)]

min [MR(x1,y2),MS(y2,z1)]

= max [ min (0.6, 1), min (0.3,0.8)]

= max [0.6, 0.3]

= 0.6

MT(x1,z2)=max [min [MR(x1,y1),MS(y1,z2)]

min [MR(x1,y2),Ms(y2,z2)]

=max [min (0.6,0.5),min (0.3,0.4)]

= max (0.5, 0.3) = 0.5

MT(x1,z3)=max [min (0.6,0.3),min (0.3,0.7)]

= max [0.3, 0.3] = 0.3

MT(x2,z1)=max [min (0.2,1),min (0.9,0.8)]

= max [ 0.2, 0.8] = 0.8

MT(x2,z2)=max [min (0.2,0.5),min (0.3,0.4)]

= max [0.2, 0.4] = 0.4

MT(x2,z3)=max [min (0.2,0.3),min (0.9,0.7)]

= max (0.2, 0.7) = 0.7

T = RoS = [0.6 0.5 0.3

0.8 0.4 0.7]

[b] Max product composition.

T = R . S

MT(x1,z1) = max [MR(x1,y1).Ms(y1,z1)]

MR(x1,y2).MS(y2,z1)]

= max (0.6, 0.24) = 0.6

MT(x1,z2)=max [MR(x1,y1).Ms(y1,z2)]

[MR(x1,y2).Ms(y2,z2)]

= max [0.3, 0.12] = 0.3

MT(x1,z3)=max [0.18,0.21]=0.21

MT(x2,z1)=max [0.2,0.72]=0.72

MT(x2,z2)=max [0.10,0.36]=0.36

MT(x2,z3)=max [0.06,0.63]=0.63

T=R.S=[0.60.30.210.720.360.63]

Please log in to add an answer.