written 5.4 years ago by |
Consider two fuzzy sets.
A = { $\frac{0.2}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4}$}
B = { $\frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{0}{4}$}
Find the algebraic sum, algebraic product, bounded and bounded difference of the given fuzzy sets.
Solution:
[A] Algebraic sum:
MA + B (x) = MA (x) + r B (x) – MA (x) . MB (x)
= { $ \frac{0.3}{1} + \frac{0.5}{2} + \frac{0.6}{3} + \frac{0.5}{4}$ }
– { $\frac{0.02}{1} + \frac{0.06}{2} + \frac{0.08}{3} $ }
= { $\frac{0.28}{1} + \frac{0.44}{2} + \frac{0.52}{3} + \frac{0.5}{4}$ }
[B] Algebraic product:
MAB (x) = MA (x) MB (x)
= { $ \frac{0.02}{1} + \frac{0.06}{2} + \frac{0.08}{3} + \frac{0}{4} $ }
[C] Bounded sum:
MA (+) B (x) = min [ 1, MA (x) + MB (x)]
= min { 1, { $\frac{0.3}{1} + \frac{0.5}{2} + \frac{0.6}{3} + \frac{0.5}{4}$}}
= $\frac{0.3}{1} + \frac{0.5}{2} + \frac{0.6}{3} + \frac{0.5}{4}$
[D]Bounded Difference:
MA OB (x) = max [ 0, MA(x) – MB(x)]
= max { 0, { $\frac{0.1}{1} + \frac{0.1}{2} + \frac{0.2}{3} + \frac{0.5}{4}$}
= { $\frac{0.1}{1} + \frac{0.1}{2} + \frac{0.2}{3} + \frac{0.5}{4}$}