written 5.6 years ago by |
The difference between the driving and back pressure is $0.35 N/mm^2$. The connecting rod length between centers is $1.2 m$ and the cylinder bore is $0.5 m.$ If the engine runs at $250 rpm$ and if the effect of piston rod diameter is neglected, Calculate:
1] Pressure on slide bars.
2] Thrust in the connecting rod.
3] Tangential force on the crank pin.
4] Turning moment on the crankshaft.
Given: $r = 300mm$
$M_R = 250 kg$
$\theta = 60°$
$\triangle P \ = \ P \ = \ 0.35 \ N/mm^2$
$L = 1.2m$
$D = 0.5m$
$N = 250\ rpm$
$\therefore \omega = \frac{2 \pi (250)}{60} = 26.18 \ rad/s.$
$\rightarrow$ $n = \frac{L}{r} = \frac{1.2}{0.3} = 4$
$\rightarrow$ Net load on piston = $F_L = 0.35 \times \frac{\pi }{4} (500)^2$
$F_L = 68.72 \times 10^3 N$
$\rightarrow$ Inertia force = $F_I = M_R. \omega^2. r. [cos \ \theta + \frac{cos \ 2 \theta}{n}]$
$= (250) (26.18)^2 (0.3) [ cos \ 60 + \frac{cos \ (2 \times 60)}{4}]$
$F_I = 19.28 \times 10^3 \ N$
$\rightarrow$ Piston Effort = $F_P \ = \ F_L \ – \ F_I$
$=(68.72 – 19.28) \times 10^3$
$F_P = 49.44 \times 10^3 N$
$\rightarrow$ $sin \ \phi = \frac{sin \ 60}{4} = 0.2165$
$\phi \ = \ 12.50°$
$\rightarrow$ Pressure on slide bars:
$F_N \ = \ F_Q . \ sin \ \phi$
$= (\frac{F_p}{cos \ \phi}) sin \ \phi$
$= f_p \ tan \ \phi$
$= (49.44 \times 10^3) tan \ (12.50)$
$F_N = 10.96 \times 10^3 \ N$
$\rightarrow$ Thrust in the connecting rod:
$F_Q = \frac{F_p}{cos \ \phi} = \frac{49.44 \times 10^3}{cos \ (12.5)}$
$F_Q = 50.64 \times 10^3 \ N$
$\rightarrow$ Tangential force on crank pin:
$F_T = F_Q . sin \ (\theta \ + \ \phi)$
$= (50.64 \times 10^3) sin \ (60 + 12.5)$
$F_T = 48.29 \times 10^3 \ N$
$\rightarrow$ Turning moment on crankshaft:
$T \ = \ F_T . \ r$
$= (48.29 \times 10^3) \ (0.3)$
$= 14.48 \times 10^3 \ N-m$