0
746views
0
0views
written 5.6 years ago by |
$m = 900 \ kg$ $k = 0.6 \ m$ $N = 1800 \ rpm$ $\therefore$ $w = \frac{2 \pi \times 1800}{60}$
$\therefore w = 188.496 \ rad/sec$
Case 1:
$v = 40 \ km/hr$
$v = \frac{40 \times 10^3}{3600}$
$I = mk^2 = 324 \ kg m^2$
$w_p = \frac{V}{R} = \frac{40 \times \frac{5}{18}}{100} = 0.111 \ rad/sec$
$C = I . w . W_p$
$= 324 \times 188.496 \times 0.111 = 6.78 \times 10^3 \ N.m$
Case 2:
$\phi = \frac{12}{2} \times \frac{\pi}{180} = \frac{0.209^c}{2} = 0.1047^c$
(Bow is descending)
Bow turns portside.
$w_0 = \frac{2 \pi }{Tp} = \frac{2 \pi}{30} = 0.2094$
$w_{p_{max}} \ = \ \theta . \ w_o \ = \ 0.0219$
$C = I.w. W_{p_{max}}$
$= 324 \times 188.496 \times 0.0219$
$C = 1337.49$
ADD COMMENT
EDIT
Please log in to add an answer.