0
12kviews
Compare Full converter and Semi converter
1 Answer
0
1.2kviews
Sr. No. Parameter Full Converter Semi Converter
1 Average load voltage $E_{\mathrm{dc}}=\frac{2 E_{m}}{\pi} \cos \alpha$ $E_{\mathrm{dc}}=\frac{E_{m}}{\pi}(1+\cos \alpha)$
2 RMS Load Voltage $E_{\mathrm{rms}}=\frac{E_{m}}{\sqrt{2}}$ $E_{\operatorname{rms}}=\frac{E_{m}}{\sqrt{2}}\left[\frac{1}{\pi}\left(\pi-\alpha+\frac{\sin 2 \alpha}{2}\right)\right]^{1 / 2}$
3 Form factor (FF) $\mathrm{F.F.}=\frac{\pi}{2 \sqrt{2} \cos \alpha}$ $\mathrm{F.F.}=E_{\mathrm{rms}} / E_{\mathrm{dc}}$
4 Ripple Factor (RF) $\mathrm{RF}=\left[\frac{\pi^{2}}{8 \cos ^{2} \alpha}-1\right]^{1 / 2}$ $\mathrm{RF}=\left[\mathrm{FF}^{2}-1\right]^{1 / 2}$
5 Rectification Efficiency $(\eta)$ $\eta=\frac{8 \cos ^{2} \alpha}{\pi^{2}}$ $\eta=1 / \mathrm{FF}^{2}$
6 Operation Two quadrant converter (Rectification and inversion) Single quadrant converter (Rectification only)
7 Fundamental Power Factor $(\text { FPF })$ $\mathrm{FPF}=\cos \alpha$ $\mathrm{FPF}=\cos (\alpha / 2)$
8 Free wheeling Mode Absent Present
9 Input Power Factor (PF) $\mathrm{PF}=\frac{2 \sqrt{2}}{\pi} \cos \alpha$ $\mathrm{PF}=\frac{\sqrt{2}(1+\cos \alpha)}{[\pi(\pi \alpha)]^{1 / 2}}$
10 Supply current Square-wave Quasi-square wave
11 Harmonic present in supply current Only odd harmonics Only odd harmonics
12 Power Flow Bidirectional Unidirectional
Please log in to add an answer.