0
12kviews
written 5.4 years ago by |
Sr. No. | Parameter | Full Converter | Semi Converter |
---|---|---|---|
1 | Average load voltage | $E_{\mathrm{dc}}=\frac{2 E_{m}}{\pi} \cos \alpha$ | $E_{\mathrm{dc}}=\frac{E_{m}}{\pi}(1+\cos \alpha)$ |
2 | RMS Load Voltage | $E_{\mathrm{rms}}=\frac{E_{m}}{\sqrt{2}}$ | $E_{\operatorname{rms}}=\frac{E_{m}}{\sqrt{2}}\left[\frac{1}{\pi}\left(\pi-\alpha+\frac{\sin 2 \alpha}{2}\right)\right]^{1 / 2}$ |
3 | Form factor (FF) | $\mathrm{F.F.}=\frac{\pi}{2 \sqrt{2} \cos \alpha}$ | $\mathrm{F.F.}=E_{\mathrm{rms}} / E_{\mathrm{dc}}$ |
4 | Ripple Factor (RF) | $\mathrm{RF}=\left[\frac{\pi^{2}}{8 \cos ^{2} \alpha}-1\right]^{1 / 2}$ | $\mathrm{RF}=\left[\mathrm{FF}^{2}-1\right]^{1 / 2}$ |
5 | Rectification Efficiency $(\eta)$ | $\eta=\frac{8 \cos ^{2} \alpha}{\pi^{2}}$ | $\eta=1 / \mathrm{FF}^{2}$ |
6 | Operation | Two quadrant converter (Rectification and inversion) | Single quadrant converter (Rectification only) |
7 | Fundamental Power Factor $(\text { FPF })$ | $\mathrm{FPF}=\cos \alpha$ | $\mathrm{FPF}=\cos (\alpha / 2)$ |
8 | Free wheeling Mode | Absent | Present |
9 | Input Power Factor (PF) | $\mathrm{PF}=\frac{2 \sqrt{2}}{\pi} \cos \alpha$ | $\mathrm{PF}=\frac{\sqrt{2}(1+\cos \alpha)}{[\pi(\pi \alpha)]^{1 / 2}}$ |
10 | Supply current | Square-wave | Quasi-square wave |
11 | Harmonic present in supply current | Only odd harmonics | Only odd harmonics |
12 | Power Flow | Bidirectional | Unidirectional |