0
5.3kviews
A Hartnell governor having a central sleeve spring and two right angled bell crank levels moves between 290r.p.m. and 310rpm for a sleeve lift of 15mm.
1 Answer
1
559views

The sleeve arms and the ball arms are 80 mm and 120 mm respectively. The levers are pivoted @ 120 mm from the governor axis and mass of each ball is 2.5 kg. The law arms are parallel to the governor axis @ lowest equilibrium speed.

Determine:

1] Loads on the spring.

2] Lowest and highest equilibrium speeds.

3] Stiffness of spring.

Solution:

N1 = 290 r.p.m.

w1=2π×29060 = 30.36 rad/sec

N2=310 r.p.m.

H=15 mm

Y=80 mm

X=120 mm

r=120 mm

m=2.5 kg

Fc1 = mr1 w21 = 2.5× 0.120× (30.36)2

Fc1 = 276.51 N

1st Position:

enter image description here

M0=0  +

(\frac{Mg+S_1}{2}) \ (Y) \ – \ Fc_1 \ (x) \ = \ 0

{As sleeve mass M is not given, \therefore M = 0 }

\frac{S_1}{2} \ (Y) \ – \ Fc_1 \ (x) \ = \ 0

\frac{S_1}{2} \ (0.08) \ – \ 276.57 (0.12) \ = \ 0

S_1 = 829.71 \ N

N_2 = 310\ rpm

w_2 = \frac{2 \pi \times 310}{60} = 32.46\ rad/sec

fc_2 = mr_2 \ w_2^2

= 2.5 \times 0.1425 \times 32.46^2

fc_2 = 375.36N

for ‘r_2’ :

h = \frac{Y}{X} (r_2 – r_1)

0.015 = \frac{0.08}{0.12} \ (r_2 – 0.12)

r_2 \ = \ 0.1425 \ m

\sum M_o \ = \ 0 \curvearrowright + . . . . {Neglecting obliquity effect}

(\frac{Mg + S_2}{2}) \ (y) \ – \ FC_2 \ (x) \ = \ 0

\frac{S_2}{2} \ (y) \ – \ FC_2 (x) \ = \ 0

\frac{S_2}{2} \ (0.08) \ – \ 375.36 \ (0.12) \ = \ 0

S_2 \ = \ 1126.08 \ N

\therefore S = \frac{S_2 \ – \ S_1}{h} \ = \ \frac{1126.08 \ – \ 829.71}{0.015}

S = 0.01975 \ N/m

Please log in to add an answer.