written 5.6 years ago by |
The governor sleeve begins to rise @ $280 \ mm$ when the links are @ angle of $30°$ to the vertical. Assuming the friction force to be constant, Determine the minimum and maximum speed of rotation when the inclination of the arms of the vertical is $45°$.
$m = 1.15 \ kg$
$M = 20 \ kg$
$N = 280 \ rpm$ @ $30°$
F = constant
$N_{min} = \ ? \ @ \ 45^0$
$N_{max} = \ ? \ @ \ 45^0$
$sin \ 30° = \frac{a}{178}$
$a = 89 \ mm$
$\therefore r = a + 38$
$= 89 + 38$
$r = 127 \ mm$
$tan \ 30° = \frac{r}{h} = \frac{127}{h}$
$h = 219.97 \ mm$
$0.21997 = \frac{895}{280^2} [ 1 + \frac{20 \times 9.81 \pm f}{2 \times 1.15 \times 9.81} (1+1)]$
$\pm F = 9.9 \ N$
$sin \ 45° = \frac{a}{178}$
$a = 125.865 \ mm$
$r = a + 38$
$= 125.865 + 38$
$r = 163.865 \ mm$
$tan \ 45° = \frac{r}{h^*} = \frac{163.865}{h^* = h^{**}}$
$h^* = h^{**} =163.86$
$h^* = \frac{895}{N^2_{min}} [1 + \frac{Mg – f}{2mg} (1 + q)]$
$0.1638 = \frac{895}{N_{min}^2} [ 1+ \frac{ 20 \times 9.81 – 9.9}{2 \times 1.15 \times 9.81} (1+1)]$
$N_{min} = 309.28 \ rpm$
$h^{**} = \frac{895}{N_{max}^2} [1 + \frac{Mg + f}{2mg} (1+q)]$
$0.1638 = \frac{895}{N^2_{max}} [ 1 + \frac{20 \times 9.81 + 9.9}{2 \times 1.15 \times 9.81} (1+1)]$
$N_{max} = 324.91 \ rpm$
Range $= 324.41 \ – \ 309.28 = 15.13 \ r.p.m.$