0
11kviews
Given modulus n = 221 and public key, e = 7 , find the values of p,q,phi(n), and d using RSA.Encrypt M = 5
1 Answer
written 5.5 years ago by | • modified 5.5 years ago |
Given
mod n = 221
public key e = 7
To find = $p=?$ $q=?$
$\phi(n)=?$ $d=?$
Using RSA
Also Encrypt M = 5
Solution =
n = p x q
221 = 13 X 17
P = 13
Q = 17
a. $\phi(n)=(p-1)(q-1)$
= (13-1)(17-1)
= 12 X 16
= 192
Now, d = ?
b. d x e mod (p-1)(q-1) = 1
i.e.
d x e mod(p-1)(q-1) = 1
e = 07
p = 13
q = 17
$\therefore$ d x 7 mod(31-1)(17-1) = 1
$\therefore$ d x 7 mod192 = 1
$\therefore$ d = 55
c. Encryption : M = 5
C = Me mod n
i.e.
C = 57 mod 221
C = 112
d. Decryption :
P = ( CT)d mod n
= (112)55 mod 221
P = 5
Thus,
P = 13
Q = 17
$\phi(n)=192$
d = 55
Encrypted for M = 5
C = 112