0
32kviews
The joint probability function

The joint probability function of two discrete r.v's X and Y is given by f(x, y) = c(2x+y), where x and y can assume all integers such that 0 ≤ x ≤2,0 ≤ y ≤ 3 and f(x,y) =0 otherwise. Find E(X), E(Y) , E(XY), E(X2), E(Y2), var(X), var(Y), cov(X, Y) and ϱ.

the joint probability distribution for X, Y, ... is a probability distribution that gives the probability that each of X, Y, ... falls in any particular range or discrete set of values specified for that variable. In the case of only two random variables, this is called a bivariate distribution, but the concept generalizes to any number of random variables, giving a multivariate distribution.


1 Answer
2
2.3kviews

X and Y are discrete RVs

To find c: We can tabulate the probabilities as follows:

f(x,y)=c(2x+y)         0x2,0y3

        =0

XY 0 1 2 3 Total
0 0 c 2c 3c 6c
1 2c 3c 4c 5c 14c
2 4c 5c 6c 7c 22c
Total 6c 9c 12c 15c 42c

Since pi=1

∴ 42c=1

c=142

With this value the probability distribution is

XY 0 1 2 3 Total
0 0 142 242 342 642
1 242 342 442 542 1442
2 442 542 642 742 2242
Total 642 942 1242 1542 1

∴ The marginal probability distributions of X & Y are:

X P(X)
0 642
1 1442
2 2242
X P(Y)
0 642
1 942
2 1242
3 1542

E(X)=pixi

    =0+1×1442+2×2242

E(X)=5842=1.381

E(Y)=piyi

    =0+1×942+2×1242+3×1542

E(Y)=7842=1.857

E(XY)=2i=03j=0 xiyj p(x=i,y=j)

=00+1.3j=0yjp(x=1,y=j)+2.3j=0yjp(x=2,y=j)

=0+1(0×242+1×342+2×442+3×542+2(0×442+1×542+2×642+3×742

=2642+7642

E(XY)=10242=2.429

E(X2)=pix2i

    =0+1×1442+22×2242

E(X2)=10242=2.429

E(Y2)=piy2i

=0+1×942+22×1242+32×1542

E(Y2)=19242=4.571

Var(X)=E(X2)E(X)2

    =2.4291.3812

   =2.4291.9072

Var(X)=0.5218

Var(Y)=E(Y2)E(Y)2

    =4.5711.8572

    =4.571-3.4484

Var(Y)=1.1226

cov(X,Y)=E(XY)-E(X)E(Y)

    =2.429-1.381*1.857=2.429-2.565=-0.1355

Cov(XY)=-0.1355

σx=(Var(X))=0.5218=0.7224

σy=(Var(Y))=1.1226=1.06

ρxy=Cov(X,Y)(σxσy)=0.1355(0.72241.06)=0.177

ρxy=0.177

Please log in to add an answer.