written 8.9 years ago by
teamques10
★ 69k
|
•
modified 8.9 years ago
|
X and Y are discrete RVs
To find c:
We can tabulate the probabilities as follows:
f(x,y)=c(2x+y) 0≤x≤2,0≤y≤3
=0
X╲Y |
0 |
1 |
2 |
3 |
Total |
0 |
0 |
c |
2c |
3c |
6c |
1 |
2c |
3c |
4c |
5c |
14c |
2 |
4c |
5c |
6c |
7c |
22c |
Total |
6c |
9c |
12c |
15c |
42c |
Since ∑pi=1
∴ 42c=1
∴ c=142
With this value the probability distribution is
X╲Y |
0 |
1 |
2 |
3 |
Total |
0 |
0 |
142 |
242 |
342 |
642 |
1 |
242 |
342 |
442 |
542 |
1442 |
2 |
442 |
542 |
642 |
742 |
2242 |
Total |
642 |
942 |
1242 |
1542 |
1 |
∴ The marginal probability distributions of X & Y are:
X |
P(X) |
0 |
642 |
1 |
1442 |
2 |
2242 |
X |
P(Y) |
0 |
642 |
1 |
942 |
2 |
1242 |
3 |
1542 |
E(X)=∑pixi
=0+1×1442+2×2242
E(X)=5842=1.381
E(Y)=∑piyi
=0+1×942+2×1242+3×1542
E(Y)=7842=1.857
E(XY)=∑2i=0∑3j=0 xiyj p(x=i,y=j)
=0∗0+1.∑3j=0yjp(x=1,y=j)+2.∑3j=0yjp(x=2,y=j)
=0+1∗(0×242+1×342+2×442+3×542+2∗(0×442+1×542+2×642+3×742
=2642+7642
E(XY)=10242=2.429
E(X2)=∑pix2i
=0+1×1442+22×2242
E(X2)=10242=2.429
E(Y2)=∑piy2i
=0+1×942+22×1242+32×1542
E(Y2)=19242=4.571
Var(X)=E(X2)−E(X)2
=2.429−1.3812
=2.429−1.9072
Var(X)=0.5218
Var(Y)=E(Y2)−E(Y)2
=4.571−1.8572
=4.571-3.4484
Var(Y)=1.1226
cov(X,Y)=E(XY)-E(X)E(Y)
=2.429-1.381*1.857=2.429-2.565=-0.1355
Cov(XY)=-0.1355
σx=√(Var(X))=√0.5218=0.7224
σy=√(Var(Y))=√1.1226=1.06
ρxy=Cov(X,Y)(σxσy)=−0.1355(0.7224∗1.06)=0.177
ρxy=0.177
the joint probability distribution for X, Y, ... is a probability distribution that gives the probability that each of X, Y, ... falls in any particular range or discrete set of values specified for that variable. In the case of only two random variables, this is called a bivariate distribution, but the concept generalizes to any number of random variables, giving a multivariate distribution.